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Abstract. It is shown that a dimension-invariant form D(d) = bdγ for fractal dimension D of random
systems (where d is Euclidean dimension of the embedding space) is in good agreement with results
of numerical simulations performed by different authors for critical (p = pc) and subcritical (p < pc)
percolation, for lattice animals, and for different aggregation processes.

PACS. 64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions –
61.43.Hv Fractals; macroscopic aggregates (including diffusion-limited aggregates) – 05.40.+j Fluctuation
phenomena, random processes, and Brownian motion

Explicit expressions for exponents as a function of dimen-
sionalities are being discussed since a quarter of a cen-
tury (Stanley-Betts formula), without an exact result. In
particular, the problem of existence of an universal re-
lation between fractal dimension of random systems (D)
and Euclidean (or topological) dimension of embedding
space (d) is still open to debates. To approximate results
of numerical simulations of diffusion-limited aggregation,
for instance, some different types of the dependence of D
on d were suggested (see [1] for a review). When one is
dealing with a specific type of data (as it is at the above
example [1]) it may be difficult to chose from different
approximation giving more or less good fit of the data.
Therefore we should seek a dependence which gives good
approximation of the data obtained for different types of
processes (if such universal dependence exists, of course).
In this note we shall represent a dependence D(d) which
may turn out to be appropriate for this role (in some inter-
val of values of d). This dependence has a general nature
(related to dimension-invariance) and gives good fit of the
data obtained in numerical simulations of critical (p = pc)
and subcritical (p < pc) percolation [2], lattice animals
[3], cluster-cluster aggregation (with and without random
impact) [4], and kinetic aggregation [5]. The dimension-
invariant form of this dependence D ' bdγ (where b and
γ are some constants) allows a simple comparison with
the numerical data (Fig. 1). Under condition D(1) = 1
the constant b = 1. It is interesting that the exponent γ
for the above mentioned systems belongs to rather nar-
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Fig. 1. lnD against ln d for data obtained at numerical sim-
ulations of critical (p = pc) percolation: (1) [2], subcritical
percolation and lattice animals; (2) [2,3], two types of cluster-
cluster aggregation: with (3), and without (4), random impact
[4], and of kinetic aggregation (5) [5]. Straight lines are drawn
for comparison with dimension-invariant representation (13).

row interval 0.6 < γ < 0.7 (and only for diffusion-limited
aggregation γ ' 1 [6]). It should be also noted that the
dimension-invariant representation with γ > 0 is no longer
valid above the upper critical dimension (if it exists) where
the fractal dimensions become independent of d.

Let a set of balls with different sizes l cover the
embedding space. Let us chose a subset with “homoge-
neous” mass distribution, i.e. for this subset the balls mass
M(l) ∝ ld. The sizes of the balls in this subset have some
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statistical distribution. If the system under consideration
is homogeneous in whole, then the average mass of the
balls from this subset

〈M(l)〉 ∝ 〈ld〉 ∝ 〈l〉d. (1)

For fractal systems

〈M(l)〉 ∝ 〈ld〉 ∝ 〈l〉D (2)

where generally fractal dimension D < d.
If we are dealing with a dimension-invariant system

[7,8], then we can find a general form of a function g(q)
in the multifractal relationship

〈lq〉 ∝ 〈l〉g(q) (3)

where q is an arbitrary number.
Indeed, let us introduce dimensionless moments [7,8]

Fqm =
〈lq〉

〈lm〉q/m
(4)

and generalized scaling

Fqm ∼ F
ρ(q,p,m)
pm . (5)

Using (3) we obtain for the exponent ρ(q, p,m) represen-
tation

ρ(q, p,m) =
g(q)− g(m)q/m

g(p)− g(m)p/m
· (6)

Dimension-invariance of the system implies [7,8]

ρ(αq, αp, αm) = ρ(q, p,m) (7)

(where α is an arbitrary positive number), or in terms
of (6)

g(αq)− g(αm)q/m

g(αp)− g(αm)p/m
=
g(q)− g(m)q/m

g(p)− g(m)p/m
· (8)

It is easy to show that general solution of equation (8) is

g(q) = aq + bqγ (9)

or
g(q) = aq + bq ln q (10)

where a, b, and γ are some constants.
Comparing equations (2, 3) and (9, 10) we obtain gen-

eral dimension-invariant forms of the dependence D(d)

D(d) = ad+ bdγ (11)

or
D(d) = ad+ bd lnd. (12)

Let us consider a particular solution (cf. (11)).

D(d) = bdγ . (13)

In Figure 1 we show data of numerical simulations per-
formed for critical (p = pc) and sub-critical (p < pc)
percolation [2], lattice animals [3], for two types (with
and without random impact) of cluster-cluster aggrega-
tion with linear trajectories [4] and for kinetic aggregation
[5]. Log-log scales are chosen in this figure for compari-
son with dimension-invariant representation (13) (straight
lines). It is interesting that for all systems represented in
Figure 1 the exponents γ belong to a rather narrow inter-
val 0.6 < γ < 0.7. To find these values of the exponent
γ from first principles seems to be an interesting problem
for future investigations.

The author is grateful to D. Stauffer for comments.
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